

 Navigation

 	
 index

 	
 next |

 	Test test documentation

Markdown test

Markdown files:

	1. FEATURES

	2. GETTING STARTED
	2.1. USING THE NATIVE PORT WITH NETWORKING
	2.1.1. SETTING UP A TAP NETWORK

	3. CONTRIBUTE

	4. MAILING LISTS

	5. LICENSE

	6. CONTRIBUTE

	7. Platform configurations for RIOT-OS

	8. Mulle OpenOCD configuration files

	9. Zolertia Re-Mote platform

	10. Port Features

	11. Requirements
	11.1. Install a Toolchain

	11.2. Drivers
	11.2.1. For the CC2538EM (USB CDC-ACM)

	11.2.2. Device Enumerations

	12. More Reading

	13. K60 tools
	13.1. Watchdog disable

	14. Valgrind Support

	15. Network Support

	16. Setting Up A Tap Network

	17. Daemonization

	18. Compile Time Options

	19. RIOT integration into IoT-LAB
	19.1. Control IoT-LAB via Make
	19.1.1. Requirements

	19.1.2. Description

	19.1.3. Variables

	19.1.4. Format of a Resource ID

	19.1.5. Targets
	19.1.5.1. iotlab-exp

	19.1.5.2. iotlab-flash

	19.1.5.3. iotlab-reset

	19.1.5.4. iotlab-term

	20. About

	21. Example usage

	22. Default options

	23. What to do about the findings

	24. cmdline2xml.sh
	24.1. Instrucions

	25. About

	26. Usage

	27. RIOT Sniffer Application
	27.1. About

	27.2. Dependencies
	27.2.1. Debuntu

	27.2.2. PIP

	27.3. Usage
	27.3.1. Examples
	27.3.1.1. Linux (serial)

	27.3.1.2. Windows (serial)

	27.3.1.3. IoT-Lab Testbed (socket)

	28. Creating a SLIP network interface

	29. Installation

	30. Usage

	31. USB to serial adapter tools
	31.1. Usage

	31.2. Exit codes

	31.3. Makefile example usage

	31.4. Limitations

	32. Getting started {#getting-started}

	33. Downloading RIOT code {#downloading-riot-code}

	34. Compiling RIOT {#compiling-riot}
	34.1. Setting up a toolchain {#setting-up-a-toolchain}

	34.2. The build system {#the-build-system}

	34.3. Building and executing an examples {#building-and-executing-and-example}

	35. RIOT Documentation {#mainpage}

	36. RIOT in a nutshell {#riot-in-a-nutshell}

	37. Contribute to RIOT {#contribute-to-riot}

	38. The quickest start {#the-quickest-start}

	39. Structure {#structure}
	39.1. core

	39.2. boards

	39.3. cpu

	39.4. drivers

	39.5. sys

	39.6. sys/net

	39.7. pkg

	39.8. examples

	39.9. tests

	39.10. dist & doc

Examples:

	1. examples/arduino_hello-world

	2. Arduino and RIOT

	3. Usage

	4. Example output

	5. examples/default

	6. Usage

	7. Example output

	8. RIOT specific

	9. Networking

	10. gnrc_networking_border_router example
	10.1. Requirements

	10.2. Configuration

	11. gnrc_networking example
	11.1. Connecting RIOT native and the Linux host

	12. Hello World!

	13. IPC Pingpong!

	14. examples/posix_sockets

	15. Usage

	16. Example output

	17. Using C++ and C in a program with RIOT
	17.1. Makefile Options

	18. Creating a patch with git

	19. OpenWSN on RIOT

	20. Usage

	21. About

	22. Usage

	23. About

	24. Usage

	25. About

	26. Usage

	27. About

	28. Usage

	29. About

	30. Usage

	31. About

	32. Usage

	33. About

	34. Usage

	35. About

	36. Usage

	37. About

	38. Usage

	39. About

	40. Usage

	41. About

	42. Usage

	43. About

	44. Usage

	45. About

	46. Usage

	47. About

	48. Usage

	49. About

	50. Usage

	51. Test for nrf24l01p lowlevel functions
	51.1. About

	51.2. Predefined pin mapping

	51.3. Usage
	51.3.1. Procedure

	51.4. Expected Results

	52. Expected result

	53. Background

	54. About

	55. Usage

	56. About

	57. Usage

	58. About

	59. Usage
	59.1. Interrupt driven

	59.2. Polling Mode

	60. Background

	61. Expected result

	62. About

	63. Usage

	64. About

	65. Usage

	66. About

	67. Usage

	68. About

	69. Usage

	70. About

	71. Usage

	72. Expected result

	73. Background

	74. Expected result

	75. Background

	76. About

	77. Usage

	78. Expected result

	79. Background

	80. Expected result

	81. Background

	82. Expected result

	83. Background

	84. Expected result

	85. Background

	86. Expected result

	87. Background

	88. Expected result

	89. Background

	90. Unittests
	90.1. Building and running tests
	90.1.1. Other output formats
	90.1.1.1. Compile example

	90.1.1.2. Text example

	90.1.1.3. XML example

	90.2. Writing unit tests
	90.2.1. File struture

	90.2.2. Testing a module
	90.2.2.1. Create a Makefile

	90.2.2.2. Define a test header.

	90.2.2.3. Implement tests

	91. Test warning on conflicting features

RST files:

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

 ZZZZZZ
 ZZZZZZZZZZZZ
 ZZZZZZZZZZZZZZZZ
 ZZZZZZZ ZZZZZZ
 ZZZZZZ ZZZZZ
 ZZZZZ ZZZZ
 ZZZZ ZZZZZ
 ZZZZ ZZZZ
 ZZZZ ZZZZZ
 ZZZZ ZZZZZZ
 ZZZZ ZZZZZZZZ 777 7777 7777777777
 ZZ ZZZZ ZZZZZZZZ 777 77777777 77777777777
 ZZZZZZZ ZZZZ ZZZZZZZ 777 7777 7777 777
 ZZZZZZZZZ ZZZZ Z 777 777 777 777
 ZZZZZZ ZZZZ 777 777 777 777
 ZZZZZ ZZZZ 777 777 777 777
 ZZZZZ ZZZZZ ZZZZ 777 777 777 777
 ZZZZ ZZZZZ ZZZZZ 777 777 777 777
 ZZZZ ZZZZZ ZZZZZ 777 777 777 777
 ZZZZ ZZZZ ZZZZZ 777 777 777 777
 ZZZZZ ZZZZZ ZZZZZ 777 777 777 777
 ZZZZZZ ZZZZZZ ZZZZZ 777 7777777777 777
 ZZZZZZZZZZZZZZZ ZZZZ 777 77777777 777
 ZZZZZZZZZZZ Z
 ZZZZZ

The friendly Operating System for IoT!

1. FEATURES

RIOT OS is an operating system for Internet of Things (IoT) devices. It is based on a microkernel and designed for

	energy efficiency

	hardware independent development

	a high degree of modularity

Its features comprise

	a preemptive, tickless scheduler with priorities

	flexible memory management

	high resolution timers

	virtual, long-term timers

	the native port allows to run RIOT as-is on Linux, BSD, and MacOS. Multiple instances of RIOT running on a single machine can also be interconnected via a simple virtual Ethernet bridge

	Wiselib support (C++ algorithm library, including routing, clustering, timesync, localization, security and more algorithms)

	IPv6

	UDP

	6LoWPAN

	NHDP

2. GETTING STARTED

	You want to start the RIOT? Just follow our Getting started documentation [https://github.com/RIOT-OS/RIOT/wiki/Introduction]

	The RIOT API itself can be built from the code using doxygen. The latest version is uploaded daily to http://riot-os.org/api.

2.1. USING THE NATIVE PORT WITH NETWORKING

If you compile RIOT for the native cpu and include the nativenet module, you can specify a network interface like this: PORT=tap0 make term

2.1.1. SETTING UP A TAP NETWORK

There is a shellscript in RIOT/dist/tools/tapsetup called tapsetup which you can use to create a network of tap interfaces.

USAGE
To create a bridge and two (or count at your option) tap interfaces:

./dist/tools/tapsetup/tapsetup [-c [<count>]]

3. CONTRIBUTE

To contribute something to RIOT, please refer to the development procedures [https://github.com/RIOT-OS/RIOT/wiki/Development-procedures] and read all notes for best practice.

4. MAILING LISTS

	RIOT OS kernel developers list

	devel@riot-os.org (http://lists.riot-os.org/mailman/listinfo/devel)

	RIOT OS users list

	users@riot-os.org (http://lists.riot-os.org/mailman/listinfo/users)

	RIOT commits

	commits@riot-os.org (http://lists.riot-os.org/mailman/listinfo/commits)

	Github notifications

	notifications@riot-os.org (http://lists.riot-os.org/mailman/listinfo/notifications)

5. LICENSE

	All sources and binaries that have been developed at Freie Universität Berlin are
licensed under the GNU Lesser General Public License version 2.1 as published by the
Free Software Foundation.

	Some external sources, especially files developed by SICS are published under
a separate license.

All code files contain licensing information.

For more information, see the RIOT website:

http://www.riot-os.org

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

6. CONTRIBUTE

This is a short version of the Development Procedures [https://github.com/RIOT-OS/RIOT/wiki/Development-procedures].

	Check if your code follows the coding conventions [https://github.com/RIOT-OS/RIOT/wiki/Coding-conventions]. If the code does not comply these style rules, your code will not be merged.

	The master branch should always be in a working state. The RIOT maintainers will create release tags based on this branch, whenever a milestone is completed.

	Comments on a pull request should be added to the request itself, and not to the commit.

	Keep commits to the point, e.g., don’t add whitespace/typo fixes to other code changes. If changes are layered, layer the patches.

	Describe the technical detail of the change(s) as specific as possible.

	Use Labels [https://github.com/RIOT-OS/RIOT/wiki/Labels] to help classify pull requests and issues.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

7. Platform configurations for RIOT-OS

This directory contains existing configuration and initialization files for platforms supported by RIOT-OS.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

8. Mulle OpenOCD configuration files

The configuration file in this directory has been tested with OpenOCD v0.7.0.
The interface used is ftdi, OpenOCD must be built with –enable-ftdi

To start the OpenOCD GDB server:

openocd -f mulle.cfg

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

9. Zolertia Re-Mote platform

 13. K60 tools

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

13. K60 tools

This directory contains tools for working with K60 CPUs.

13.1. Watchdog disable

wdog-disable.bin is a location-independent watchdog disable function with a breakpoint instruction at the end. Useful for disabling the watchdog directly from OpenOCD.

Usage:

openocd -c 'reset halt' \
 -c 'load_image wdog-disable.bin 0x20000000 bin' \
 -c 'resume 0x20000000' # watchdog is disabled and core halted

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 14. Valgrind Support

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

14. Valgrind Support

Rebuild your application using the all-valgrind target like this:

make -B clean all-valgrind

That way native will tell Valgrind about RIOT’s stacks and prevent
Valgrind from reporting lots of false positives.
The debug information flag -g is not strictly necessary, but passing
it allows Valgrind to tell you precisely which code triggered the error.

To run your application run:

make term-valgrind

All this does is run your application under Valgrind.
Now Valgrind will print some information whenever it detects an
invalid memory access.

In order to debug the program when this occurs you can pass the
–db-attach parameter to Valgrind. E.g:

valgrind --db-attach=yes ./bin/native/default.elf tap0

Now, you will be asked whether you would like to attach the running
process to gdb whenever a problem occurs.

In order for this to work under Linux 3.4 or newer, you might need to
disable the ptrace access restrictions:
As root call:

echo 0 > /proc/sys/kernel/yama/ptrace_scope

15. Network Support

If you compile RIOT for the native cpu and include the native_net
module, you need to specify a network interface like this:

make term PORT=tap0

16. Setting Up A Tap Network

There is a shellscript in RIOT/dist/tools/tapsetup called tapsetup which you
can use to create a network of tap interfaces.

Usage:
To create a bridge and two (or count at your option) tap interfaces:

../../dist/tools/tapsetup/tapsetup [-c [<count>]]

On OSX you need to start the RIOT instance at some point during the script’s
execution. The script will instruct you when to do that.

To delete the bridge and all tap interfaces:

../../dist/tools/tapsetup/tapsetup -d

For OSX you have to run this after killing your RIOT instance and rerun
../../dist/tools/tapsetup [-c [<count>]] before restarting.

17. Daemonization

You can daemonize a riot process. This is useful for larger networks.
Valgrind will fork along with the riot process and dump its output in
the terminal.

Usage:

./bin/native/default.elf -d

18. Compile Time Options

Compile with

CFLAGS=-DNATIVE_AUTO_EXIT make

to exit the riot core after the last thread has exited.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 19. RIOT integration into IoT-LAB

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

19. RIOT integration into IoT-LAB

Check the Wiki to see how to build and run RIOT on FIT IoT-LAB:
https://github.com/iot-lab/iot-lab/wiki/Riot-support

19.1. Control IoT-LAB via Make

19.1.1. Requirements

This feature requires to have a valid account for the FIT IoT-LAB
(registration there is open for everyone) and the
iot-lab/cli-tools [https://github.com/iot-lab/cli-tools] to be installed.

19.1.2. Description

The folder dist/testbed-support/ contains a Makefile.iotlab that defines
some targets to control RIOT experiments on IoT-LAB using the GNU Make build
system. In order to use this, one has to include this Makefile at the end of
the application’s Makefile, like this:

include $(RIOTBASE)/dist/testbed-support/Makefile.iotlab

19.1.3. Variables

This Makefile introduces some additional variables (default values in
brackets):

	IOTLAB_NODES (5)

	IOTLAB_DURATION (30 minutes)

	IOTLAB_SITE (grenoble.iot-lab.info)

	IOTLAB_TYPE (m3:at86rf231)

	IOTLAB_AUTH ($HOME/.iotlabrc)

	IOTLAB_USER (taken from $IOTLAB_AUTH)

	IOTLAB_EXP_ID (taken from first experiment in running state)

	IOTLAB_EXP_NAME (RIOT_EXP)

	IOTLAB_PHY_NODES

	IOTLAB_EXCLUDE_NODES

19.1.4. Format of a Resource ID

Both variables IOTLAB_PHY_NODES and IOTLAB_EXCLUDE_NODES use the resource id
string format as specified in the output of experiment-cli submit --help.
An example would be: 1-3+7+10-13

19.1.5. Targets

It defines the following targets:

	iotlab-exp

	iotlab-flash

	iotlab-reset

	iotlab-term

Please note: All targets that require an already running experiment will
use the first experiment of the user that has already entered state “Running”
if IOTLAB_EXP_ID is not set.

19.1.5.1. iotlab-exp

This schedules a new experiment on the FIT IoT-LAB and waits until it enters
“Running” state. It will request IOTLAB_NODES nodes of type IOTLAB_TYPE
for IOTLAB_DURATION minutes at site IOTLAB_SITE. With IOTLAB_PHY_NODES
it is possible to choose specific nodes for this experiment by using the resource id
string format as described above.
Note that the usage of IOTLAB_PHY_NODES ignores IOTLAB_NODES. It will also flash the
binary of the current application to all registered nodes. The name of the
experiment is set to “RIOT_EXP” or “RIOT_EXP_$(IOTLAB_EXP_NAME)”
if IOTLAB_EXP_NAME is defined.

19.1.5.2. iotlab-flash

This target updates the application on all registered nodes of the given
experiment to the current version of the application.
Certain nodes can be excluded by listing them in the IOTLAB_EXCLUDE_NODES variable
using the resource id string format as described above. If you do not use the default site,
then you must specify the site with IOTLAB_SITE.

19.1.5.3. iotlab-reset

This target resets all registered nodes of the given experiment.
Certain nodes can be excluded by listing them in the IOTLAB_EXCLUDE_NODES variable
using the resource id string format as described above. If you do not use the default site,
then you must specify the site with IOTLAB_SITE.

19.1.5.4. iotlab-term

Uses ssh to login the user on the IoT-LAB server of the specified site and
start the serial_aggregator to communication with all registered nodes.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 20. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

20. About

This is a cppcheck wrapper script with appropriate parameters for
checking RIOT.
It accepts a branch name as an argument which is used to limit the
scope of the check. Other parameters will be passed to cppcheck, so
you can further modify its behavior.

21. Example usage

Check all files changed in the current branch against the branch named
‘master’:

./dist/tools/cppcheck/check.sh master

Check all files but ignore warnings about unused struct members:

./dist/tools/cppcheck/check.sh --suppress=unassignedVariable

Check all files changed in the current branch against the branch named
‘master’, ignoring warnings about unassigned variables:

./dist/tools/cppcheck/check.sh master --suppress=unassignedVariable

22. Default options

This script suppresses warnings of the type “unusedStructMember” by default. If
you want to get warnings about “unusedStructMembers” run the script with the
–show-unused-struct option:
./dist/tools/cppcheck/check.sh –show-unused-struct [BRANCH] [options to be passed]

23. What to do about the findings

You should read the code carefully. While cppcheck certainly produces
valuable information, it can also warn about code that is actually OK.
If this happens, you can add an “inline suppression” like this:

/* cppcheck-suppress passedByValue */
timex_t timex_add(const timex_t a, const timex_t b);

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 24. cmdline2xml.sh

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

24. cmdline2xml.sh

Export all command line include paths and macro definitions to an XML file
suitable for import in Eclipse CDT.

24.1. Instrucions

The Eclipse project must be located at “/RIOT” inside your Eclipse workspace,
otherwise change cmdline2xml.sh accordingly (ECLIPSE_PROJECT_NAME=RIOT).

In the shell:

cd to application directory (e.g. examples/hello-world)
make eclipsesym

In Eclipse:

	Open the project properties, menu Project->Properties

	Select C/C++ General->Paths and Symbols

	(optional) Click Restore Defaults to delete any existing macros and include paths

	Click Import Settings...

	Select eclipsesym.xml in your application directory and press Finish

	Rebuild C/C++ index, menu Project->C/C++ Index->Rebuild

All conditional compilation and all include paths should now resolve properly
for your application.

The file eclipsesym.xml is specific to the application being built and may
differ depending on what modules are enabled and which platform is being built.
Make sure that everything is set up properly in your shell and that regular
make all works before running make eclipsesym

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 25. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

25. About

This script checks if a Pull Request needs squashing or if it is waiting for
another Pull Request.

26. Usage

./pr_check.sh [<master branch>]

The optional <master branch> parameter refers to the branch the pull request’s
branch branched from. The script will output all commits marked as squashable
from HEAD to the merge-base with <master branch>. The default for
<master branch> is master.

A commit is marked as squashable if it contains the keywords SQUASH or FIX
(case insensitive) within the first five characters of it’s subject title.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 27. RIOT Sniffer Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

27. RIOT Sniffer Application

27.1. About

This sniffer script can be used to sniff network traffic using RIOT based
nodes. It is primarily designed for sniffing wireless data traffic, but can also
well be used for wired network traffic, as long as the used network devices
support promiscuous mode and output of raw data.

The sniffer is based on a RIOT node running the sniffer application [https://github.com/RIOT-OS/applications/tree/master/sniffer] application located in RIOTs application repository [https://github.com/RIOT-OS/applications].
This node outputs received network traffic via a serial port or a network socket in the Wireshark
pcap format. This output is then parsed by the sniffer.py script included
in this folder run on a host computer.

The sniffer.py script is a modified version of malvira’s script [https://github.com/malvira/libmc1322x/blob/master/tools/rftestrx2pcap.py] for the Redbee Ecotag
(https://github.com/malvira/libmc1322x/wiki/wireshark).

27.2. Dependencies

The sniffer.py script needs pyserial [https://pypi.python.org/pypi/pyserial].

Installing the dependencies:

27.2.1. Debuntu

apt-get install python-serial

27.2.2. PIP

pip install pyserial

27.3. Usage

General usage:

	Flash an applicable RIOT node with the sniffer application from
(https://github.com/RIOT-OS/applications/tree/master/sniffer)

	Run the sniffer.py script
For serial port:

$./sniffer.py serial <tty> <baudrate> <channel> [outfile]

For network socket:

$./sniffer.py socket <host> <port> <channel> [outfile]

The script has the following parameters:

	connType: The type of connection to use. Either serial for serial ports or
socket for network sockets.

	host: The host if the socket connection type is in use.

	port: The port of the host if the socket connection type is in use.

	tty: The serial port the RIOT board is connected to. Under Linux, this is
typically something like /dev/ttyUSB0 or /dev/ttyACM0. Under Windows,
this is typically something like COM0 or COM1. This option is used
for the serial connection type.

	baudrate: The baudrate the serial port is configured to. The default in
RIOT is 115200, though this is defined per board and some boards
have some other value defined per default. NOTE: when sniffing
networks where the on-air bitrate is > baudrate, it makes sense
to increase the baudrate so no data is skipped when sniffing.
This option is used for the serial connection type.

	channel: The radio channel to use when sniffing. Possible values vary and
depend on the link-layer that is sniffed. This parameter is
ignored when sniffing wired networks.

	[outfile]: When this parameter is specified, the sniffer output is saved
into this file. See the examples below for alternatives to
specifying this parameter. (optional)

27.3.1. Examples

The following examples are made when using the sniffer application together with
an iotlab-m3 node that is connected to /dev/ttyUSB1 (or COM1) (serial connection type)
and runs per default with a baudrate of 500000. For the socket connection type port 20000
is used.

27.3.1.1. Linux (serial)

Dump packets to a file:

$./sniffer.py serial /dev/ttyUSB1 500000 17 > foo.pcap

This .pcap can then be opened in wireshark.

Alternatively for live captures, you can pipe directly into wireshark with:

$./sniffer.py serial /dev/ttyUSB1 500000 17 | wireshark -k -i -

27.3.1.2. Windows (serial)

For windows you can use the optional third argument to output to a
.pcap:

$./sniffer.py serial COM1 500000 17 foo.pcap

27.3.1.3. IoT-Lab Testbed (socket)

Start an experiment either via the website provided by the IoT-Lab testbed or
by using the RIOT specific iotlab Makefile with 3 neighboring iotlab-m3 nodes,
where one of them runs the sniffer application and the others run the gnrc_networking application.

Now you can bind the sniffer node to localhost:
ssh -L 20000:node-id:20000 user@site.iot-lab.info

Then you can dump or observe the traffic generated by the other nodes running the gnrc_networking
application via one of the following commands:

$./sniffer.py socket localhost 20000 26 > foo.pcap
$./sniffer.py socket localhost 20000 26 | wireshark -k -i -

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 28. Creating a SLIP network interface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

28. Creating a SLIP network interface

The module gnrc_slip (Serial line IP) enables the RIOT network stack to
communicate IP packets over the serial interface. This collection of tools
originally from Contiki [1] enables Linux to interpret this data. Though there
is a tool for such operations on Linux (slattach) it is only able to handle
IPv4 packages and is unnessarily complicated.

29. Installation

Just install them using

make
sudo make install

By default they are installed to the /usr/local/bin directory, you can however
change that by setting the PREFIX environment variable

export PREFIX=${HOME}/.local
make
sudo make install

30. Usage

tapslip6 allows you to open a TAP interface (includes link-layer data) for
a serial interace handling IPv6 data,
tunslip allows you to open a TUN interface (includes only network-layer data)
for a serial interace handling IPv4 data, and
tunslip6 allows you to open a TUN interface (includes only network-layer data)
for a serial interace handling IPv6 data.

For more information use the help feature of the tools

tapslip -h
tunslip -h
tunslip6 -h

[1] https://github.com/contiki-os/contiki/tree/a4206273a5a491949f9e565e343f31908173c998/tools

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 31. USB to serial adapter tools

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

31. USB to serial adapter tools

Tools for finding connected USB to serial adapter devices.

31.1. Usage

./list-ttys.sh

List all currently connected USB to serial adapters by searching through
/sys/bus/usb/devices/.

./find-tty.sh [serial_regex1] [serial_regex2] ... [serial_regexZ]

Write to stdout the first tty connected to the chosen programmer.
serial_regexN are extended regular expressions (as understood by egrep)
containing a pattern matched against the USB device serial number. Each of the
given expressions are tested, against each serial number until a match has been
found.

In order to search for an exact match against the device serial, use
‘^serialnumber$’ as the pattern. If no pattern is given, find-tty.sh returns
the first found USB tty (in an arbitrary order, this is not guaranteed to be
the /dev/ttyUSBX with the lowest number).

Serial strings from all connected USB ttys can be found from the list generated
by list-ttys.sh.

31.2. Exit codes

find-tty.sh returns 0 if a match is found, 1 otherwise.

31.3. Makefile example usage

The script find-tty.sh is designed for use from within a board
Makefile.include. An example section is shown below (for an OpenOCD based
solution):

Add serial matching command
ifneq ($(PROGRAMMER_SERIAL),)
 OOCD_BOARD_FLAGS += -c 'ftdi_serial $(PROGRAMMER_SERIAL)'

 ifeq ($(PORT),)
 # try to find tty name by serial number, only works on Linux currently.
 ifeq ($(OS),Linux)
 PORT := $(shell $(RIOTBASE)/dist/tools/usb-serial/find-tty.sh "^$(PROGRAMMER_SERIAL)$$")
 endif
 endif
endif

Fallback PORT if no serial was specified or if the specified serial was not found
ifeq ($(PORT),)
 ifeq ($(OS),Linux)
 PORT := $(shell $(RIOTBASE)/dist/tools/usb-serial/find-tty.sh)
 else ifeq ($(OS),Darwin)
 PORT := $(shell ls -1 /dev/tty.SLAB_USBtoUART* | head -n 1)
 endif
endif

TODO: add support for windows as host platform
ifeq ($(PORT),)
 $(info CAUTION: No terminal port for your host system found!)
endif
export PORT

31.4. Limitations

Only tested on Linux, and probably only works on Linux.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 32. Getting started {#getting-started}

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

32. Getting started {#getting-started}

[TOC]

33. Downloading RIOT code {#downloading-riot-code}

You can obtain the latest RIOT code from
our Github [https://github.com/RIOT-OS/] repository either by
downloading the latest tarball [https://github.com/RIOT-OS/RIOT/releases] or
by cloning the git repository [https://github.com/RIOT-OS/RIOT].

In order to clone the RIOT repository, you need the
Git revision control system [http://git-scm.com/] and run the following
command:

git clone git://github.com/RIOT-OS/RIOT.git

34. Compiling RIOT {#compiling-riot}

34.1. Setting up a toolchain {#setting-up-a-toolchain}

Depending on the hardware you want to use, you need to first install a
corresponding toolchain. The Wiki on RIOT’s Github page contains a lot of
information that can help you with your platform:

	ARM-based platforms [https://github.com/RIOT-OS/RIOT/wiki/Family:-ARM]

	TI MSP430 [https://github.com/RIOT-OS/RIOT/wiki/Family:-MSP430]

	Atmel ATmega [https://github.com/RIOT-OS/RIOT/wiki/Family%3A-ATmega]

	native [https://github.com/RIOT-OS/RIOT/wiki/Family:-native]

34.2. The build system {#the-build-system}

RIOT uses GNU make [https://www.gnu.org/software/make/] as build system. The
simplest way to compile and link an application with RIOT, is to set up a
Makefile providing at least the following variables:

	APPLICATION: should contain the (unique) name of your application

	BOARD: specifies the platform the application should be build for by
default

	RIOTBASE: specifies the path to your copy of the RIOT repository (note,
that you may want to use $(CURDIR) here, to give a relative path)

Additionally it has to include the Makefile.include, located in RIOT’s root
directory:

a minimal application Makefile
APPLICATION = mini-makefile
BOARD ?= native
RIOTBASE ?= $(CURDIR)/../RIOT

include $(RIOTBASE)/Makefile.include

You can use Make’s ?= operator in order to allow overwriting
variables from the command line. For example, you can easily specify the target
platform, using the sample Makefile, by invoking make like this:

make BOARD=iotlab-m3

Besides typical targets like clean, all, or doc, RIOT provides the
special targets flash and term to invoke the configured flashing and
terminal tools for the specified platform. These targets use the variable
PORT for the serial communication to the device. Neither this variable nor
the targets flash and term are mandatory for the native port.

For the native port, PORT has a special meaning: it is used to identify the
tap interface if the netdev2_tap module is used. The target debug can be
used to invoke a debugger on some platforms. For the native port the additional
targets such as all-valgrind and valgrind exist. Refer to
cpu/native/README.md for additional information

Some RIOT directories contain special Makefiles like Makefile.base,
Makefile.include or Makefile.dep. The first one can be included into other
Makefiles to define some standard targets. The files called Makefile.include
are used in boards and cpu to append target specific information to
variables like INCLUDES, setting the include paths. Makefile.dep serves to
define dependencies.

Unless specified otherwise, make will create an elf-file as well as an Intel
hex file in the bin folder of your application directory.

Learn more about the build system in the
Wiki [https://github.com/RIOT-OS/RIOT/wiki/The-Make-Build-System]

34.3. Building and executing an examples {#building-and-executing-and-example}

RIOT provides a number of examples in the examples/ directory. Every example
has a README that documents its usage and its purpose. You can build them by
typing

make BOARD=samr21-xpro

or

make all BOARD=samr21-xpro

into your shell.

To flash the application to a board just type

make flash BOARD=samr21-xpro

You can then access the board via the serial interface:

make term BOARD=samr21-xpro

If you are using multiple boards you can use the PORT macro to specify the
serial interface:

make term BOARD=samr21-xpro PORT=/dev/ttyACM1

Note that the PORT macro has a slightly different semantic in native. Here
it is used to provide the name of the TAP interface you want to use for the
virtualized networking capabilities of RIOT.

We use pyterm as the default terminal application. It is shipped with RIOT in
the dist/tools/pyterm/ directory. If you choose to use another terminal
program you can set TERMPROG (and if need be the TERMFLAGS) macros:

make -C examples/gnrc_networking/ term \
 BOARD=samr21-xpro \
 TERMPROG=gtkterm \
 TERMFLAGS="-s 115200 -p /dev/ttyACM0 -e"

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 35. RIOT Documentation {#mainpage}

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

35. RIOT Documentation {#mainpage}

[TOC]

36. RIOT in a nutshell {#riot-in-a-nutshell}

RIOT is an open-source microkernel-based operating system, designed to match
the requirements of Internet of Things (IoT) devices and other embedded
devices. These requirements include a very low memory footprint (on the order
of a few kilobytes), high energy efficiency, real-time capabilities,
communication stacks for both wireless and wired networks, and support for a
wide range of low-power hardware.

RIOT provides a microkernel, multiple network stacks, and utilities which
include cryptographic libraries, data structures (bloom filters, hash tables,
priority queues), a shell and more. RIOT supports a wide range of
microcontroller architectures, radio drivers, sensors, and configurations for
entire platforms, e.g. Atmel SAM R21 Xplained Pro, Zolertia Z1, STM32 Discovery
Boards etc. (see the list of
supported hardware [https://github.com/RIOT-OS/RIOT/wiki/RIOT-Platforms].
Across all supported hardware (32-bit, 16-bit, and 8-bit platforms). RIOT
provides a consistent API and enables ANSI C and C++ application programming,
with multithreading, IPC, system timers, mutexes etc.

37. Contribute to RIOT {#contribute-to-riot}

RIOT is developed by an open community that anyone is welcome to join:

	Download and contribute your code on
GitHub [https://github.com/RIOT-OS/RIOT]. You can read about how to
contribute in our GitHub
Wiki [https://github.com/RIOT-OS/RIOT/wiki/Contributing-to-RIOT].

	Subscribe [http://lists.riot-os.org/mailman/listinfo/users] to
users@riot-os.org to ask for help using RIOT or writing an application for
RIOT (or to just stay in the loop). A searchable archive of this list is
available at the
RIOT user Gmane newsgroup [http://news.gmane.org/gmane.os.riot.user]

	[Subscribe]((http://lists.riot-os.org/mailman/listinfo/devel) to
devel@riot-os.org to follow and discuss kernel and network stack
developement, or hardware support. A searchable archive of this list is
available at the
RIOT devel Gmane newsgroup [http://news.gmane.org/gmane.os.riot.devel]

	Follow us on Twitter [https://twitter.com/RIOT_OS] for news from the RIOT
community.

	Contact us on IRC for live support and discussions:
irc.freenode.org #riot-os

38. The quickest start {#the-quickest-start}

You can run RIOT on most IoT devices, on open-access testbed hardware (e.g.
IoT-lab), and also directly as a process on your Linux/FreeBSD/OSX machine (we
call this the native port). Try it right now in your terminal window:

git clone git://github.com/RIOT-OS/RIOT.git # assumption: git is pre-installed
git checkout <LATEST_RELEASE>
cd RIOT
./dist/tools/tapsetup/tapsetup # create virtual Ethernet
 # interfaces to connect to RIOT
cd examples/default/
make all
make term

... and you are in the RIOT shell!
Type help to discover available commands. For further information see the
README of the default example [https://github.com/RIOT-OS/RIOT/tree/].

To use RIOT directly on your embedded platform, and for more hands-on details
with RIOT, see @ref getting-started.

Before that, skimming through the next section is recommended (but not
mandatory).

39. Structure {#structure}

This section walks you through RIOT’s structure. Once you understand this
structure, you will easily find your way around in RIOT’s code base.

[image: Overview]

RIOT’s code base is structured into five groups.

	The kernel (core)

	Platform specific code (cpu; boards)

	Device drivers (drivers)

	Libraries and network code (sys; pkg)

	Applications for demonstrating features and for testing (examples;
tests)

In addition RIOT includes a collection of scripts for various tasks (dist) as
well as a predefined environment for generating this documentation (doc).

The structural groups are projected onto the directory structure of RIOT, where
each of these groups resides in one or two directories in the main RIOT
directory.

The following list gives a more detailed description of each of RIOT’s
top-level directories:

39.1. core

This directory contains the actual kernel. The kernel consists of the
scheduler, inter-process-communication (messaging), threading, thread
synchronization, and supporting data-structures and type definitions.

See @ref core for further information and API documentations.

39.2. boards

The platform dependent code is split into two logic elements: CPUs and boards,
while maintaining a strict 1-to-n relationship, a board has exactly one CPU,
while a CPU can be part of n boards. The CPU part contains all generic, CPU
specific code (see below).

The board part contains the specific configuration for the CPU it contains.
This configuration mainly includes the peripheral configuration and
pin-mapping, the configuration of on-board devices, and the CPU’s clock
configuration.

On top of the source and header files needed for each board, this directory
additionally may include some script and configuration files needed for
interfacing with the board. These are typically custom flash/debug scripts or
e.g. OpenOCD configuration files. For most boards, these files are located in a
dist sub-directory of the board.

See here @ref boards for further information.

39.3. cpu

For each supported CPU this directory contains a sub-directory with the name of
the CPU. These directories then contain all CPU specific configurations, such
as implementations of power management (LPM), interrupt handling and vectors,
startup code, clock initialization code and thread handling (e.g. context
switching) code. For most CPUs you will also find the linker scripts in the
ldscripts sub-directory.

In the periph sub-directory of each CPU you can find the implementations of
the CPU’s peripheral drivers like SPI, UART, GPIO, etc. See @ref drivers_periph
for their API documentation.

Many CPUs share a certain amount of their code (e.g. all ARM Cortex-M based
CPUs share the same code for task switching and interrupt handling). This
shared code is put in its own directories, following a xxxxx_common naming
scheme. Examples for this is code shared across architectures (e.g.
cortexm_common, msp430_comon) or code shared among vendors (e.g.
kinetis_common).

See @ref cpu for more detailed informtation.

39.4. drivers

This directory contains the drivers for external devices such as network
interfaces, sensors and actuators. Each device driver is put into its own
sub-directory with the name of that device.

All of RIOT’s device drivers are based on the peripheral driver API (e.g. SPI,
GPIO, etc.) and other RIOT modules like the xtimer. This way the drivers are
completely platform agnostic and they don’t have any dependencies into the CPU
and board code.

See @ref drivers for more details.

39.5. sys

RIOT follows the micro-kernel design paradigm where everything is supposed to
be a module. All of these modules that are not part of the hardware abstraction
nor device drivers can be found in this directory. The libraries include data
structures (e.g. bloom, color), crypto libraries (e.g. hashes, AES) ,
high-level APIs (e.g. Posix implementations), memory management (e.g. malloc),
the RIOT shell and many more.

See @ref sys for a complete list of available libraries

39.6. sys/net

The sys/net sub-directory needs to be explicitly mentioned, as this is where
all the networking code in RIOT resides. Here you can find the network stack
implementations (e.g. the GNRC stack) as well as network stack agnostic code as
header definitions or network types.

See @ref net for more details on networking code.

39.7. pkg

RIOT comes with support for a number of external libraries (e.g.
OpenWSN [http://www.openwsn.org/],
microcoap [https://github.com/1248/microcoap]). The way they are included is
that RIOT ships with a custom Makefile for each supported library that
downloads the library and optionally applies a number of patches to make it
work with RIOT. These Makefiles and patches can be found in the pkg
directory.

See @ref pkg for a detailed description on how this works.

39.8. examples

Here you find a number of example applications that demonstrate certain
features of RIOT. The default example found in this directory is a good
starting point for anyone who is new to RIOT.

For more information best browse that directory and have a look at the
README.md files that ship with each example.

39.9. tests

Many features/modules in RIOT come with their own test application, which are
located in this directory. In contrary to the examples these tests are mostly
focusing on a single aspect than on a set of features. Despite for testing, you
might consider these tests also for insights on understanding RIOT.

39.10. dist & doc

All the tooling around RIOT can be found in these two folders.

doc contains the doxygen configuration and also contains the compiled doxygen
output after running make doc.

Lastly, the dist directory contains tools to help you with RIOT. These
include
the serial terminal application pyterm, generic scripts for flashing,
debugging, reseting (e.g. support for OpenOCD [http://openocd.org/],
Jlink [https://www.segger.com/jlink_base.html]), as well as code enabling easy
integration to open testbeds such as the IoT-LAB [https://www.iot-lab.info/].
Furthermore you can find here scripts to do all kind of code and style checks.

 1. examples/arduino_hello-world

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

1. examples/arduino_hello-world

This application demonstrates the usage of Arduino sketches in RIOT.

The sketch itself is fairly simple. On startup, it initializes the LED pin to
output mode, starts the serial port with a baudrate of 115200 and prints
“Hello Arduino!” on the serial port. When running, the application echoes any
newline terminated string that was received on the serial port, while toggling
the default LED with a 1Hz frequency.

The sketch just uses some very primitive Arduino API elements for demonstration
purposes:

	control of digital pins (pinMode(), digital read and write)

	the delay() function

	reading and writing the serial port using the Serial class

2. Arduino and RIOT

For information on the Arduino support in RIOT please refer to the API
documentation at http://doc.riot-os.org/group__sys__arduino.html

3. Usage

Just send any newline terminated string to the board’s serial port, and the
board will echo this string.

4. Example output

When using pyterm, the output will look similar to this:

2015-11-26 14:04:58,307 - INFO # main(): This is RIOT! (Version: xxx)
2015-11-26 14:04:58,308 - INFO # Hello Arduino!
hello again
2015-11-26 14:06:29,800 - INFO # Echo: hello again
are you still there?
2015-11-26 14:06:48,301 - INFO # Echo: are you still there?

If your board is equipped with an on-board LED, you should see this LED toggling
every half a second.

NOTE: if your board’s STDIO baudrate is not configured to be 115200 (see your
board’s board.h), the first line of the output may not be shown or scrambled.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 5. examples/default

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

5. examples/default

This application is a showcase for RIOT’s hardware support. Using it
for your board, you should be able to interactively use any hardware
that is supported.

To do this, the application uses the shell and shell_commands
modules and all the driver modules each board supports.

shell is a very simple interactive command interpreter that can be
used to call functions. Many of RIOT’s modules define some generic
shell commands. These are included via the shell_commands module.

Additionally, the ps module which provides the ps shell command is
included.

6. Usage

Build, flash and start the application:

export BOARD=your_board
make
make flash
make term

The term make target starts a terminal emulator for your board. It
connects to a default port so you can interact with the shell, usually
that is /dev/ttyUSB0. If your port is named differently, the
PORT=/dev/yourport variable can be used to override this.

7. Example output

The shell commands come with online help. Call help to see which commands
exist and what they do.

Running the help command on an iotlab-m3:

2015-09-16 16:57:17,723 - INFO # help
2015-09-16 16:57:17,725 - INFO # Command Description
2015-09-16 16:57:17,726 - INFO # ---------------------------------------
2015-09-16 16:57:17,727 - INFO # reboot Reboot the node
2015-09-16 16:57:17,729 - INFO # ps Prints information about running threads.
2015-09-16 16:57:17,731 - INFO # isl29020_init Initializes the isl29020 sensor driver.
2015-09-16 16:57:17,733 - INFO # isl29020_read Prints data from the isl29020 sensor.
2015-09-16 16:57:17,735 - INFO # lps331ap_init Initializes the lps331ap sensor driver.
2015-09-16 16:57:17,737 - INFO # lps331ap_read Prints data from the lps331ap sensor.
2015-09-16 16:57:17,739 - INFO # l3g4200d_init Initializes the l3g4200d sensor driver.
2015-09-16 16:57:17,740 - INFO # l3g4200d_read Prints data from the l3g4200d sensor.
2015-09-16 16:57:17,742 - INFO # lsm303dlhc_init Initializes the lsm303dlhc sensor driver.
2015-09-16 16:57:17,744 - INFO # lsm303dlhc_read Prints data from the lsm303dlhc sensor.
2015-09-16 16:57:17,746 - INFO # ifconfig Configure network interfaces
2015-09-16 16:57:17,747 - INFO # txtsnd send raw data

Running the ps command on an iotlab-m3:

2015-09-16 16:57:57,634 - INFO # ps
2015-09-16 16:57:57,637 - INFO # pid | name | state Q | pri | stack (used) | location
2015-09-16 16:57:57,640 - INFO # 1 | idle | pending Q | 15 | 256 (140) | 0x20000200
2015-09-16 16:57:57,642 - INFO # 2 | main | pending Q | 7 | 1536 (640) | 0x20000300
2015-09-16 16:57:57,645 - INFO # 3 | pktdump | bl rx _ | 6 | 1536 (544) | 0x200025e0
2015-09-16 16:57:57,647 - INFO # 4 | at86rfxx | bl rx _ | 3 | 1024 (360) | 0x2000099c
2015-09-16 16:57:57,649 - INFO # | SUM | | | 4352 (1684)

8. RIOT specific

The ps command is used to analyze the thread’s state and memory
status.

9. Networking

The ifconfig command will help you to configure all available network
interfaces. On an iolab-m3 it will print something like:

2015-09-16 16:58:37,762 - INFO # ifconfig
2015-09-16 16:58:37,766 - INFO # Iface 4 HWaddr: 9e:72 Channel: 26 NID: 0x23 TX-Power: 0dBm State: IDLE CSMA Retries: 4
2015-09-16 16:58:37,768 - INFO # Long HWaddr: 36:32:48:33:46:da:9e:72
2015-09-16 16:58:37,769 - INFO # AUTOACK CSMA
2015-09-16 16:58:37,770 - INFO # Source address length: 2

Type ifconfig help to get an online help for all available options (e.g.
setting the radio channel via ifconfig 4 set chan 12).

The txtsnd command allows you to send a simple string directly over the link
layer using unicast or broadcast. The application will also automatically print
information about any received packet over the serial. This will look like:

2015-09-16 16:59:29,187 - INFO # PKTDUMP: data received:
2015-09-16 16:59:29,189 - INFO # ~~ SNIP 0 - size: 28 byte, type:
NETTYPE_UNDEF (0)
2015-09-16 16:59:29,190 - INFO # 000000 7b 3b 3a 02 85 00 e7 fb 00 00 00 00 01
02 5a 55
2015-09-16 16:59:29,192 - INFO # 000010 40 42 3e 62 f2 1a 00 00 00 00 00 00
2015-09-16 16:59:29,194 - INFO # ~~ SNIP 1 - size: 18 byte, type:
NETTYPE_NETIF (-1)
2015-09-16 16:59:29,195 - INFO # if_pid: 4 rssi: 49 lqi: 78
2015-09-16 16:59:29,196 - INFO # src_l2addr: 5a:55:40:42:3e:62:f2:1a
2015-09-16 16:59:29,197 - INFO # dst_l2addr: ff:ff
2015-09-16 16:59:29,198 - INFO # ~~ PKT - 2 snips, total size: 46 byte

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 10. gnrc_networking_border_router example

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

10. gnrc_networking_border_router example

10.1. Requirements

In order to setup a 6LoWPAN border router on RIOT, you need either a board that
offers an IPv6 capable network interface (e.g. the encx24j600 Ethernet chip)
or connect it over the serial interface to a Linux host and use the SLIP
standard [1]. The example application in this folder assumes as a default to be
run on an Atmel SAM R21 Xplained Pro evaluation board using an external UART
adapter for the second serial interface. However, it is feasible to run the
example on any RIOT supported platform that offers either more than one UART or
be equipped with an IPv6 capable network device. In this case only the Makefile
of this application has to be slightly modified, e.g. by replacing the line

USEMODULE += gnrc_slip

with something like

USEMODULE += encx24j600

and specify the target platform as BOARD = myplatform.
In order to use the border router over SLIP, please check the periph_conf.h
of the corresponding board and look out for the UART_NUMOF parameter. Its
value has to be bigger than 1.

10.2. Configuration

In order to connect a RIOT 6LoWPAN border router over SLIP you run a small
program called tunslip (imported from Contiki) [2] on the Linux host. The
program can be found in the dist/tools/tunslip folder and has to be compiled
before first use (simple calling make should be enough). Now, one can start
the program by calling something like:

cd dist/tools/tunslip
make
sudo ./tunslip6 affe::1/64 -t tun0 -s /dev/ttyUSB0

Assuming that /dev/ttyUSB0 is the device descriptor for the (additional) UART
interface of your RIOT board.

On the RIOT side you have to configure the SLIP interface by configuring a
corresponding IPv6 address, e.g.

ifconfig 6 add affe::2

and adding the SLIP interface to the neighbor cache (because Linux won’t
respond to neighbor solicitations on an interface without a link-layer address)
by calling

ncache add 6 affe::1

After this you’re basically done and should be able to ping between the border
router and the outside world (assuming that the Linux host is properly
forwarding your traffic).

Additionally, you can configure IPv6 addresses on the 6LoWPAN interface for
communication with other 6LoWPAN nodes. See also the gnrc_networking example
for further help.

[1] https://tools.ietf.org/html/rfc1055

[2] https://github.com/contiki-os/contiki/blob/master/tools/tunslip.c

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 11. gnrc_networking example

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

11. gnrc_networking example

11.1. Connecting RIOT native and the Linux host

Note: RIOT does not support IPv4, so you need to stick to IPv6 anytime. To establish a connection between RIOT and the Linux host,
you will need netcat (with IPv6 support). Ubuntu 14.04 comes with netcat IPv6 support pre-installed. On Debian it’s available in the
package netcat-openbsd. Be aware that many programs require you to add an option such as -6 to tell them to use IPv6, otherwise they
will fail. If you’re using a Raspberry Pi, run sudo modprobe ipv6 before trying this example, because raspbian does not load the
IPv6 module automatically.
On some systems (openSUSE for example), the firewall may interfere, and prevent some packets to arrive at the application (they will
however show up in Wireshark, which can be confusing). So be sure to adjust your firewall rules, or turn it off (who needs security anyway).

First, create a tap interface (to which RIOT will connect) and a bridge (to which Linux will connect):

sudo ip tuntap add tap0 mode tap user ${USER}
sudo ip link set tap0 up

Now you can start the gnrc_networking example by invoking make term. This should automatically connect to the tap0 interface. If
this doesn’t work for some reason, run make without any arguments, and then run the binary manually like so (assuming you are in the examples/gnrc_networking directory):

To verify that there is connectivity between RIOT and Linux, go to the RIOT console and run ifconfig:

> ifconfig
Iface 7 HWaddr: ce:f5:e1:c5:f7:5a
inet6 addr: ff02::1/128 scope: local [multicast]
inet6 addr: fe80::ccf5:e1ff:fec5:f75a/64 scope: local
inet6 addr: ff02::1:ffc5:f75a/128 scope: local [multicast]

Copy the link-local address [https://en.wikipedia.org/wiki/Link-local_address] of the RIOT node (prefixed with fe80) and try to ping it from the Linux node:

ping6 fe80::ccf5:e1ff:fec5:f75a%tap0

Note that the interface on which to send the ping needs to be appended to the IPv6 address, %tap0 in the above example. When talking to the RIOT node, you always want to send to/receive from the tap0 interface.

If the pings succeed you can go on to send UDP packets. To do that, first start a UDP server on the RIOT node:

> udp server start 8808
Success: started UDP server on port 8808

Now, on the Linux host, you can run netcat to connect with RIOT’s UDP server:

nc -6uv fe80::ccf5:e1ff:fec5:f75a%tap0 8808

The -6 option is necessary to tell netcat to use IPv6 only, the -u option tells it to use UDP only, and the -v option makes it give more verbose output (this one is optional).

You should now see that UDP messages are received on the RIOT side. Opening a UDP server on the Linux side is also possible. Do do that, write down the IP address of the host (run on Linux):

ifconfig tap0
tap0 Link encap:Ethernet HWaddr ce:f5:e1:c5:f7:59
 inet6 addr: fe80::4049:5fff:fe17:b3ae/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:6 errors:0 dropped:0 overruns:0 frame:0
 TX packets:36 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:488 (488.0 B) TX bytes:3517 (3.5 KB)

Then open a UDP server on Linux (the -l option makes netcat listen for incoming connections):

nc -6ul 8808

Now, on the RIOT side, send a UDP packet using:

udp send fe80::4049:5fff:fe17:b3ae 8808 testmessage

You should see testmessage appear in netcat. Instead of using netcat, you can of course write your own software, but you may have to bind the socket to a specific interface (tap0 in this case). For an example that shows how to do so, see here [https://gist.github.com/backenklee/dad5e80b764b3b3d0d3e].

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 12. Hello World!

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

12. Hello World!

This is a basic example how to use RIOT in your embedded application.
It prints out the famous text Hello World!.

This example should foremost give you an overview how to use the Makefile system:

	First you must give your application a name, which is commonly the same as the name of the directory it resides in.
Then you can define a default BOARD for which the application was written.
By using e.g. make BOARD=msba2 you can override the default board.
With make buildtest the application gets compiled for all supported boards.

	The variable RIOTBASE contains an absolute or relative path to the directory where you have checked out RIOT.
If your code resides in a subdirectory of RIOT, then you can use $(CURDIR) as it’s done in here.

	The variable QUIET, which is either 1 or 0, defines whether to print verbose compile information, or hide them, respectively.

	The last line of your Makefile must be include $(RIOTBASE)/Makefile.include.

The code itself may look like your usual C beginners hello-world example.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 13. IPC Pingpong!

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

13. IPC Pingpong!

This example is to illustrate the usage of RIOTs IPC messaging system.

The application starts a second thread (in addition to the main thread) and sends messages between
these two threads. The main thread calls thread_send_receive() in an endless loop. The second
thread receives the message, prints 2nd: got msg from x to stdout and sends a reply message with
an incrementing number back to the main thread. The main thread then prints the number it received
from the 2nd thread.

The correct output should look like this:

This is RIOT! (Version: xxx)
kernel_init(): jumping into first task...
Starting IPC Ping-pong example...
1st thread started, pid: 1
2nd thread started, pid: 2
2nd: Got msg from 1
1st: Got msg with content 2
2nd: Got msg from 1
1st: Got msg with content 3
2nd: Got msg from 1
1st: Got msg with content 4
2nd: Got msg from 1
1st: Got msg with content 5
2nd: Got msg from 1
1st: Got msg with content 6
2nd: Got msg from 1
1st: Got msg with content 7
2nd: Got msg from 1
1st: Got msg with content 8
2nd: Got msg from 1
1st: Got msg with content 9
2nd: Got msg from 1
1st: Got msg with content 10
[...]

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 14. examples/posix_sockets

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

14. examples/posix_sockets

This application is a showcase for RIOT’s POSIX socket support. To
keep things simple this application has only one-hop support and
no routing capabilities.

15. Usage

Build, flash and start the application:

export BOARD=your_board
make
make flash
make term

The term make target starts a terminal emulator for your board. It
connects to a default port so you can interact with the shell, usually
that is /dev/ttyUSB0. If your port is named differently, the
PORT=/dev/yourport (not to be confused with the UDP port) variable can
be used to override this.

16. Example output

The shell commands come with online help. Call help to see which commands
exist and what they do.

udp send fe80::1 1337 uiaeue
2015-09-22 14:55:30,686 - INFO # > udp send fe80::1 1337 uiaeue
2015-09-22 14:55:30,690 - INFO # Success: send 6 byte to fe80::1:1337

Running the help command on an iotlab-m3:

2015-09-22 14:54:54,442 - INFO # help
2015-09-22 14:54:54,443 - INFO # Command Description
2015-09-22 14:54:54,444 - INFO # ---------------------------------------
2015-09-22 14:54:54,446 - INFO # udp send data over UDP and listen on UDP ports
2015-09-22 14:54:54,447 - INFO # reboot Reboot the node
2015-09-22 14:54:54,449 - INFO # ps Prints information about running threads.
2015-09-22 14:54:54,451 - INFO # mersenne_init initializes the PRNG
2015-09-22 14:54:54,453 - INFO # mersenne_get returns 32 bit of pseudo randomness
2015-09-22 14:54:54,454 - INFO # ifconfig Configure network interfaces
2015-09-22 14:54:54,455 - INFO # txtsnd send raw data
2015-09-22 14:54:54,457 - INFO # ncache manage neighbor cache by hand
2015-09-22 14:54:54,459 - INFO # routers IPv6 default router list

Running the ps command on an iotlab-m3:

2015-09-22 14:54:57,134 - INFO # > ps
2015-09-22 14:54:57,139 - INFO # pid | name | state Q | pri | stack (used) | location
2015-09-22 14:54:57,143 - INFO # 1 | idle | pending Q | 15 | 256 (136) | 0x200001cc
2015-09-22 14:54:57,157 - INFO # 2 | main | pending Q | 7 | 1536 (620) | 0x200002cc
2015-09-22 14:54:57,164 - INFO # 3 | 6lo | bl rx _ | 3 | 1024 (404) | 0x20003ef8
2015-09-22 14:54:57,169 - INFO # 4 | ipv6 | bl rx _ | 4 | 1024 (436) | 0x20001cc0
2015-09-22 14:54:57,172 - INFO # 5 | udp | bl rx _ | 5 | 1024 (268) | 0x20004660
2015-09-22 14:54:57,177 - INFO # 6 | at86rfxx | bl rx _ | 3 | 1024 (320) | 0x20001888
2015-09-22 14:54:57,183 - INFO # | SUM | | | 5888 (2184)

Start a UDP server with udp server start <udp_port>:

2015-09-22 14:55:09,563 - INFO # > udp server start 1337
2015-09-22 14:55:09,564 - INFO # Success: started UDP server on port 1337

Send a UDP package with udp send <dst_addr> <dst_port> <data>:

2015-09-22 14:55:30,686 - INFO # > udp send fe80::3432:4833:46d4:9e06 1337 test
2015-09-22 14:55:30,690 - INFO # Success: send 4 byte to [fe80::3432:4833:46d4:9e06]:1337

You can get the IPv6 address of the destination by using the ifconfig command on the receiver:

2015-09-22 14:58:10,394 - INFO # ifconfig
2015-09-22 14:58:10,397 - INFO # Iface 6 HWaddr: 9e:06 Channel: 26 NID: 0x23 TX-Power: 0dBm State: IDLE CSMA Retries: 4
2015-09-22 14:58:10,399 - INFO # Long HWaddr: 36:32:48:33:46:d4:9e:06
2015-09-22 14:58:10,400 - INFO # AUTOACK CSMA MTU:1280 6LO IPHC
2015-09-22 14:58:10,402 - INFO # Source address length: 8
2015-09-22 14:58:10,404 - INFO # Link type: wireless
2015-09-22 14:58:10,407 - INFO # inet6 addr: ff02::1/128 scope: local [multicast]
2015-09-22 14:58:10,415 - INFO # inet6 addr: fe80::3432:4833:46d4:9e06/64 scope: local
2015-09-22 14:58:10,416 - INFO #

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 17. Using C++ and C in a program with RIOT

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

17. Using C++ and C in a program with RIOT

This project demonstrates how user can use both C++ and C in their application with RIOT.

17.1. Makefile Options

	CXXEXFLAGS : user’s extra flags used to build c++ files should be defined here (e.g -std=gnu++11).

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 18. Creating a patch with git

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

 This directory provides some porting information for libraries and programs to
use with RIOT (to build an external module). If you’d like to add a package to
RIOT you need to add a directory with the name of your package to this directory.
Your directory should contain at least two files:

	One or more patch files - Your patches of the upstream application of
the package to make it build with RIOT.

	Makefile- A Makefile describing how to get the upstream application,
apply the patch and how to build the package as a RIOT module.
A rough template for several methods of acquiring a package is provided in
Makefile.git, Makefile.http, and Makefile.svn

18. Creating a patch with git

Assuming your upstream application resides in a git repository, you can create
the patch files as follows:

	checkout the targeted version of the upstream application

	conduct necessary changes (e.g. edit, add, or remove some files)

	commit your changes using git commit

	create the patch files using git format-patch -n HEAD~N where N is the
number of commits you did

	move the resulting patch files to the corresponding subfolder of pkg

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 19. OpenWSN on RIOT

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

19. OpenWSN on RIOT

This port of OpenWSN to RIOT is based on current OpenWSN upstream providing a
BSP with RIOT’s interfaces. Currently supported are iotlab-m3 and fox. More
boards will follow through improvements in netdev radio driver interface.

20. Usage

A test can be found in tests/openwsn providing a shell command to initialise
as root or listening node. And providing a sample Makefile.

Build using

$> export BOARD=iotlab-m3
$> export PORT=/dev/ttyTHEPORTOFYOURIOTLAB
$> make -B clean flash term

To use OpenWSN with RIOT it has to be added to the used packages variable

USEPKG += openwsn

On the first build the archive will be fetched, patched and built.
WARNING A call of make clean also cleans the OpenWSN tree right now so
changes to the source code will be lost in the next build.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 21. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

21. About

This is a manual test application for the ADT7310 temperature sensor driver.

22. Usage

This test application will initialize the sensor with the following parameters:

	Mode: 1 SPS

	Resolution: 16 bit

After initialization, the sensor reads the acceleration values every second
and prints them to the STDOUT.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 23. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

23. About

This is a manual test application for the AT86RF2xx radio driver

For running this test, you need to connect/configure the following pins of your
radio device:

	SPI MISO

	SPI MOSI

	SPI CLK

	CS (ship select)

	RESET

	SLEEP

	INT (external interrupt)

24. Usage

For testing the radio driver you can use the netif and txtsnd shell commands
that are included in this application.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 25. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

25. About

This is a manual test application for the HDC1000 driver.

26. Usage

This test application will initialize the HDC1000 sensor with the following parameters:

	Temperature and humidity are acquired in sequence

	Temperature measurement resolution 14 bit

	Humidity measurement resolution 14 bit

After initialization, the sensor reads the temperature and humidity values every 1s
and prints them to STDOUT.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 27. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

27. About

This is a manual test application for the HIH6130 humidity and temperature sensor.

28. Usage

After initialization, the sensor reads the measurement values every 100ms
and prints them to the STDOUT.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 29. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

29. About

This is a manual test application for the INA220 current and power monitor driver.

30. Usage

This test application will initialize the sensor with the following parameters:

	ADC resolution: 12 bit

	Sampling time: 532 us

	Calibration register: 4096

After initialization, the sensor reads the measurement values every 100ms
and prints them to the STDOUT.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 31. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

31. About

This is a manual test application for the ISL29020 light sensor driver.

32. Usage

This test application will initialize the list sensor with the following parameters:

	Mode: Ambient light measurement

	Range: 16000LUX

After initialization, the sensor value is read every 250ms and printed to the STDOUT.

To verify the seen value you can hold the sensor into a bright light or shield the sensor to
see the value changing.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 33. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

33. About

This is a manual test application for the ISL29125 light sensor driver.

34. Usage

This test application will initialize the list sensor with the following parameters:

	Mode: All modes are tested once, then RGB mode is used continuously

	Range: 16000 lux

	Resolution: 16 bit

After initialization, the sensor value is read every 250ms and printed to the stdout.

Expose the sensor to varying light sources to see changing readouts.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 35. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

35. About

This is a manual test application for testing the KW2xrf network device driver.

For running this test, you need to connect/configure the following pins of your
radio device:

	SPI DEV

	CS (chip select)

	INT (external interrupt)

36. Usage

For testing the radio driver you can use the netif and txtsnd shell commands
that are included in this application.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 37. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

37. About

This is a manual test application for the L3G4200D gyroscope driver.

38. Usage

This test application will initialize the pressure sensor with the following parameters:

	Sampling Rate: 100Hz

	Bandwidth: 25Hz

	Scale: 500DPS

After initialization, the sensor reads the angular speed values every 10ms
and prints them to the STDOUT.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 39. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

39. About

This is a manual test application for the LIS3DH accelerometer driver.

40. Usage

This test application will initialize the accelerometer with the following parameters:

	Sampling Rate: 100Hz

	Scale: 4G

	Temperature sensor: Enabled

After initialization, the sensor reads the acceleration values every 100ms
and prints them to the STDOUT.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 41. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

41. About

This is a manual test application for the LPS331AP pressure sensor driver.

42. Usage

This test application will initialize the pressure sensor with the following parameters:

	Sampling Rate: 7Hz

After initialization, the sensor reads the pressure and temperature values every 250ms
and prints them to the STDOUT.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 43. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

43. About

This is a manual test application for the MAG3110 magnetometer driver.

44. Usage

This test application will initialize the MAG3110 with the following parameters:

	output rate set to 1.25 Hz

	over sample ratio set to 128

After initialization, the sensor reads the x-, y-, z-axis values every 1 s
and prints them to STDOUT.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 45. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

45. About

This is a manual test application for the MMA8652 accelerometer driver.

46. Usage

This test application will initialize the MMA8652 sensor with the following parameters:

	full scale parameter set to +/-2 g

	6.25 Hz output data-rate

After initialization, the sensor reads the x-, y-, z-axis values every 1 s
and prints them to STDOUT.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 47. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

47. About

This is a manual test application for the MPL3115A2 driver.

48. Usage

This test application will initialize the MPL3115A2 sensor with the following parameters:

	oversample ratio 128

After initialization, the sensor reads the pressure and temperature values every 1s
and prints them to STDOUT.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 49. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

49. About

This is a test application for the MPU-9150 Nine-Axis Driver.

50. Usage

The application will initialize the MPU-9150 motion sensor with the following parameters:

	Accelerometer: ON

	Gyroscope: ON

	Magnetometer: ON

	Sampling Rate: 200Hz

	Compass Sampling Rate: 100Hz

After initialization, the application reads accel, gyro, compass and temperature values
every second and prints them to the STDOUT.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 51. Test for nrf24l01p lowlevel functions

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

51. Test for nrf24l01p lowlevel functions

51.1. About

This is a small test application to see how the lowlevel-driver functions of
the proprietary nrf24l01p-transceiver work. These functions consist of general
SPI and GPIO commands, which abstract the driver-functions from the used board.

51.2. Predefined pin mapping

Please compare the tests/driver_nrf24l01p_lowlevel/Makefile for predefined
pin-mappings on different boards. (In addition, you also need to connect to 3V
and GND)

51.3. Usage

You should be presented with the RIOT shell, providing you with commands to
initialize the transceiver (command: it), sending one packet (command:
send) or read out and print all registers of the transceiver as binary values
(command: prgs).

51.3.1. Procedure

	take two boards and connect a transceiver to each
(it should be also possible to use one board with different SPI-ports)

	depending on your board, you’ll maybe also need to connect a UART/tty converter

	build and flash the test-program to each

	open a terminal (e.g. pyterm) for each

	if possible, reset the board by using the reset-button. You’ll see “Welcome to RIOT” etc.

	type help to see the description of the commands

	initialize both with it

	with one board, send a packet by typing send

	in the next step you can also use send to send data in the other direction

	now you can use send on both boards/transceivers to send messages between them

51.4. Expected Results

After you did all steps described above, you should see that a 32 Byte sequence
(numbers from 32...1) has been transferred from one device to the other. This
sequence is printed out from the receiver after the receive interrupt occurred
and the receive-procedure has been made.

After initialization (it) you should see the following output:

 > it

Init Transceiver

Registering nrf24l01p_rx_handler thread...
################## Print Registers ###################
REG_CONFIG:
0x0 returned: 00111111

REG_EN_AA:
0x1 returned: 00000001

REG_EN_RXADDR:
0x2 returned: 00000011

REG_SETUP_AW:
0x3 returned: 00000011

REG_SETUP_RETR:
0x4 returned: 00101111

REG_RF_CH:
0x5 returned: 00000101

REG_RF_SETUP:
0x6 returned: 00100111

REG_STATUS:
0x7 returned: 00001110

REG_OBSERVE_TX:
0x8 returned: 00000000

REG_RPD:
0x9 returned: 00000000

REG_RX_ADDR_P0:
0xa returned: e7 e7 e7 e7 e7

REG_TX_ADDR:
0x10 returned: e7 e7 e7 e7 e7

REG_RX_PW_P0:
0x11 returned: 00100000

REG_FIFO_STATUS:
0x17 returned: 00010001

REG_DYNPD:
0x1c returned: 00000000

REG_FEATURE:
0x1d returned: 00000000

After the data has been sent (send), you should see the following output on the receiver terminal:

In HW cb
nrf24l01p_rx_handler got a message: Received packet.
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 52. Expected result

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

52. Expected result

The test will initialize all basic networking functionality including the
minimal NRF51822 radio driver and run the shell providing netif shell commands.

53. Background

Use the shell commands to test the link layer functionality of the minimal
NRF51822 radio driver (nrfmin).

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 54. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

54. About

This is a manual test application for the SPI NVRAM driver.

55. Usage

This test application will initialize the SPI bus and NVRAM device with the
following parameters:

	Baudrate: 10 MHz (overridable by setting TEST_NVRAM_SPI_SPEED)

	SPI config: SPI_CONF_FIRST_RISING (overridable by setting TEST_NVRAM_SPI_CONF)

The memory will be overwritten by the test application. The original contents
will not be restored after the test.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 56. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

56. About

This application is a test for the PDC8544 LCD display driver.

57. Usage

Use the provided shell commands to control your display.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 58. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

58. About

This is a manual test application for the PIR motion sensor driver.

In order to build this application, you need to add the board to the
Makefile’s WHITELIST first and define a pin mapping (see below).

59. Usage

There are two ways to test this. You can either actively poll the sensor
state, or you can register a thread which receives messages for state
changes.

59.1. Interrupt driven

Connect the sensor’s “out” pin to a GPIO of your board that can be
configured to create interrupts.
Compile and flash this test application like:

export BOARD=your_board
export PIR_GPIO=name_of_your_pin
make clean
make all-interrupt
make flash

The output should look like:

kernel_init(): jumping into first task...

PIR motion sensor test application

Initializing PIR sensor at GPIO_8... [OK]

Registering PIR handler thread... [OK]
PIR handler got a message: the movement has ceased.
PIR handler got a message: something started moving.
PIR handler got a message: the movement has ceased.

59.2. Polling Mode

Connect the sensor’s “out” pin to any GPIO pin of you board.
Compile and flash this test application like:

export BOARD=your_board
export PIR_GPIO=name_of_your_pin
make clean
make all-polling
make flash

The output should look like this:

kernel_init(): jumping into first task...
PIR motion sensor test application

Initializing PIR sensor at GPIO_10... [OK]

Printing sensor state every second.
Status: lo
...
Status: lo
Status: hi
...

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 60. Background

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

60. Background

Test for the high level servo driver.

61. Expected result

A servo connected to PWM_0 channel 0 should move back and forth inside the
angle -90 degrees to +90 degrees, approximately.

Using a scope should show a varying pulse length between 1000 us to 2000 us
long. The requested frequency is 100 Hz, but due to hardware limitations it
might not be possible to achieve the selected frequency. The pulse width
should, however, remain the same, only the frequency of pulses (and hence the
duty cycle) should differ.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 62. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

62. About

This is a manual test application for the SRF02 ultrasonic ranger driver.

63. Usage

After initialization, the sensor value is read periodically and printed to the STDOUT.

To verify the seen value you can focus the sensor against any reflecting object and vary the distance to
see the value changing.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 64. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

64. About

This is a manual test application for the SRF08 ultrasonic ranger driver.

65. Usage

After initialization, the sensor values are read periodically and printed to the STDOUT. Here, three echos are stored.

To verify the seen values you can focus the sensor against any reflecting object and vary the distance to
see especially the first measured value changing.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 66. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

66. About

This is a manual test application for the TCS37727 driver.

67. Usage

This test application will initialize the TCS37717 sensor
with the following parameters: Gain 4x, RGBC on, Proximity Detection off

After initialization, the sensor reads the RGBC ADC data every 1s
and prints them to STDOUT.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 68. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

68. About

This is a manual test application for the TMP006 driver.

69. Usage

This test application will initialize the TMP006 sensor with the following parameters:

	conversion rate 1 per second

After initialization, the sensor reads the temperature values every 1s
and prints them to STDOUT.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 70. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

70. About

This is a manual test application for testing the Xbee S1 network device driver.

For running this test, you need to connect the following pins of a Xbee S1
module to your board:

	UART RX

	UART TX

	VCC (3V3)

	GND

NOTE: when you use an Arduino Xbee shield, the Xbee module is connected to the
same UART as RIOTs standard out. In this case you must redefine the STDIO to
another UART interface in the board.h and connect a UART-to-USB adapter to that
UART.

71. Usage

For testing the Xbee driver you can use the netif shell commands that are
included in this application.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 72. Expected result

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

72. Expected result

This application should infinitely print ‘-‘ characters. If it prints only a single ‘+’ characters the test must be considered as failed.

73. Background

This test was introduced due to an error for floating point handling in an older newlib version.

The idea for this test is taken from:
http://sourceware.org/ml/newlib/2010/msg00149.html

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 74. Expected result

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

74. Expected result

When running this test, you should see the samples of all configured ADC channels
continuously streamed to std-out.

75. Background

This test application will initialize each configured ADC device to sample with
10-bit accuracy. Once configured the application will continuously convert each
available channel and print the conversion results to std-out.

For verification of the output connect the ADC pins to known voltage levels
and compare the output.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 76. About

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

76. About

This is a test application for a digital to analog converter (DAC).

This test application will initialize each configured DAC and one ADC (ADC_O)
device to sample with 10-bit accuracy. The ADC is only initialized if there is
one available on your board.

After initialization, values from 0 to 1000 are converted through the DACs in a
loop. Shortly after the digital to analog conversion of one number, the ADC_0
samples its input signal. The numbers that are given to the DACs and the
numbers that are sampled by the ADC were printed to the STDOUT.

77. Usage

a) Connect an oscilloscope to the DAC pins and look at the ten iteration signal levels

or

b) Connect the ADC input to the DAC outputs successively and compare if the sampled input value correlates with the printed output value at each DAC port.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 78. Expected result

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

78. Expected result

This test enables you to test all available low-level I2C functions. Consult the ‘help’
shell command for available actions.

79. Background

Test for the low-level I2C driver.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 80. Expected result

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

80. Expected result

If everything is running as supposed to, you should see a 1KHz PWM with oscillating duty cycle
on each channel of the selected PWM device.

81. Background

Test for the low-level PWM driver.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 82. Expected result

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

82. Expected result

This test outputs a sequence of random bytes, starting with one, then two and so on, until 20 random bytes are printed. Then the application sleeps for a second and starts over.

83. Background

This test was introduced to test the implementation of the low-level random number generator driver. For most platforms the implementation is based on hardware CPU peripherals.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 84. Expected result

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

84. Expected result

When everything works as expected, you should see a alarm message after 10 seconds from start-up.

85. Background

Test for the low-level RTC driver.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 86. Expected result

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

86. Expected result

When everything works as expected, you should see a hello message popping up every 10 seconds.

87. Background

Test for the low-level RTT driver.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 88. Expected result

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

88. Expected result

You should be presented with the RIOT shell, providing you with commands to initialize a board
as master or slave, and to send and receive data via SPI.

89. Background

Test for the low-level SPI driver.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 90. Unittests

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test test documentation

90. Unittests

90.1. Building and running tests

Tests can be built by calling:

cd tests/unittests
make

If there are tests for a module you even can build tests specifically for this module:

make tests-<module>
e.g.
make tests-core

You then can run the tests by calling

make term

or flash them to your board as you would flash any RIOT application to the board (see [[board documentation|RIOT-Platforms]]).

90.1.1. Other output formats

Other output formats using embUnit [http://embunit.sourceforge.net/]‘s textui library are available by setting the environment variable OUTPUT:

	Compiler: OUTPUT="COMPILER"

	Text: OUTPUT="TEXT"

	XML: OUTPUT="XML"

	Color: OUTPUT="COLOR" (like default, but with red/green output)

	Colored-Text: OUTPUT="COLORTEXT" (like TEXT, but with red/green output)

90.1.1.1. Compile example

OUTPUT="COMPILER" make tests-core
make term

(only outputs in case of test failures)

90.1.1.2. Text example

OUTPUT="TEXT" make tests-core
make term

- core_bitarithm_tests
1) OK test_SETBIT_null_null
2) OK test_SETBIT_null_limit
3) ...
- core_clist_tests
25) ...
- ...

OK (... tests)

90.1.1.3. XML example

OUTPUT="XML" make tests-core
make term

<?xml version="1.0" encoding='shift_jis' standalone='yes' ?>
<TestRun>
<core_bitarithm_tests>
<Test id="1">
<Name>test_SETBIT_null_null</Name>
</Test>
<Test id="2">
<Name>test_SETBIT_null_limit</Name>
</Test>
...
</core_bitarithm_tests>
<core_clist_tests>
<Test id="25">
<Name>test_clist_add_one</Name>
</Test>
...
</core_clist_tests>
<Statistics>
<Tests>...</Tests>
</Statistics>
</TestRun>

90.2. Writing unit tests

90.2.1. File struture

RIOT uses embUnit [http://embunit.sourceforge.net/] for unit testing.
All unit tests are organized in tests/unittests and can be build module-wise, if needed.
For each module there exists a tests-<modulename>/tests-<modulename>.h file, at least one C file in tests-<modulename>/ and a tests-<modulename>/Makefile.
It is recommended to add a C file named tests-<modulename>/tests-<modulename>-<headername>.c for every header file that defines functions (or macros) implemented in the module.
If there is only one such header file tests-<modulename>/tests-<modulename>.c should suffice.

Each *.c file should implement a function defined in tests-<modulename>/tests-<modulename>.h, named like

Test *tests_<modulename>_<headername>_tests(void);

/* or respectively */

Test *tests_<modulename>_tests(void);

90.2.2. Testing a module

To write new tests for a module you need to do three things:

	Create a Makefile: add a file tests-<modulename>/Makefile

	Define a test header: add a file tests-<modulename>/tests-<modulename>.h

	Implement tests: for each header file, that defines a function or macro implemented or related to the module, add a file tests-<modulename>/tests-<modulename>-<headername>.c or tests-<modulename>/tests-<modulename>.c if there is only one header.

90.2.2.1. Create a Makefile

The Makefile should have the following content:

include $(RIOTBASE)/Makefile.base

90.2.2.2. Define a test header.

The test header tests-<modulename>/tests-<module>.h of a module you add to tests/unittests/ should have the following structure

/*
 * Copyright (C) <year> <author>
 *
 * This file is subject to the terms and conditions of the GNU Lesser
 * General Public License v2.1. See the file LICENSE in the top level
 * directory for more details.
 */

/**
 * @addtogroup unittests
 * @{
 *
 * @file
 * @brief Unittests for the ``module`` module
 *
 * @author <author>
 */
#ifndef TESTS_<MODULE>_H_
#define TESTS_<MODULE>_H_
#include "embUnit/embUnit.h"

#ifdef __cplusplus
extern "C" {
#endif

/**
 * @brief Generates tests for <header1>.h
 *
 * @return embUnit tests if successful, NULL if not.
 */
Test *tests_<module>_<header1>_tests(void);

/**
 * @brief Generates tests for <header2>.h
 *
 * @return embUnit tests if successful, NULL if not.
 */
Test *tests_<module>_<header2>_tests(void);

/* ... */

#ifdef __cplusplus
}
#endif

#endif /* TESTS_<MODULE>_H_ */
/** @} */

90.2.2.3. Implement tests

Every tests-<modulename>/tests-<module>*.c file you add to tests/unittests/ should have the following structure:

/*
 * Copyright (C) <year> <author>
 *
 * This file is subject to the terms and conditions of the GNU Lesser
 * General Public License v2.1. See the file LICENSE in the top level
 * directory for more details.
 */

/* clib includes */

#include "embUnit/embUnit.h"

#include "<header>.h"

#include "tests-<module>.h"

/* your macros */

/* your global variables */

static void set_up(void)
{
 /* omit if not needed */
}

static void tear_down(void)
{
 /* omit if not needed */
}

static void test_<function1>_<what1>(void) {
 /* ... */

 TEST_ASSERT(/* ... */);
}

static void test_<function1>_<what2>(void) {
 /* ... */

 TEST_ASSERT(/* ... */);
}

/* ... */

static void test_<function2>_<what1>(void) {
 /* ... */

 TEST_ASSERT(/* ... */);
}

static void test_<function2>_<what2>(void) {
 /* ... */

 TEST_ASSERT(/* ... */);
}

/* ... */

Test *tests_<module>_<header>_tests(void)
{
 EMB_UNIT_TESTFIXTURES(fixtures) {
 new_TestFixture(test_<function1>_<what1>),
 new_TestFixture(test_<function1>_<what2>),
 new_TestFixture(test_<function2>_<what1>),
 new_TestFixture(test_<function2>_<what2>),
 /* ... */
 };

 EMB_UNIT_TESTCALLER(<module>_<header>_tests, "<module>_<header>_tests",
 tests_<module>_<header>_set_up,
 tests_<module>_<header>_tear_down, fixtures);
 /* set up and tear down function can be NULL if omitted */

 return (Test *)&<module>_<header>;
}

The following assertion macros are available via embUnit

 	Assertion
 	Description

 	
 TEST_ASSERT_EQUAL_STRING(expected,actual)

 	
 Assert that strings actual and expected are equivalent

 	
 TEST_ASSERT_EQUAL_INT(expected,actual)

 	
 Assert that integers actual and expected are equivalent

 	
 TEST_ASSERT_NULL(pointer)

 	
 Assert that pointer == NULL

 	
 TEST_ASSERT_NOT_NULL(pointer)

 	
 Assert that pointer != NULL

 	
 TEST_ASSERT_MESSAGE(condition, message)

 	
 Assert that condition is TRUE (non-zero) or output customized message on failure.

 	
 TEST_ASSERT(condition)

 	
 Assert that condition is TRUE (non-zero)

 	
 TEST_FAIL(message)

 	
 Register a failed assertion with the specified message. No logical test is performed.

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 91. Test warning on conflicting features

 Navigation

 	
 index

 	
 previous |

 	Test test documentation

91. Test warning on conflicting features

Using conflicting features provided by boards was invisible for the user until the used features resulted in a traceable problem or the user was aware of the conflict in advance from documentation ect.
Now, existing and known conflicts can be recorded into FEATURES_CONFLICT for each board to inform the user on a conflict situation during compile time.

This test requires conflicting features in its Makefile, i.e. FEATURES_REQUIRED = periph_dac periph_spi.
It is expected to be presented with a warning on the conflicts with a short description message during compile time for the stm32f4discovery [https://github.com/RIOT-OS/RIOT/wiki/Board%3A-STM32F4discovery] by now, i.e. :

$ make BOARD=stm32f4discovery
The following features may conflict: periph_dac periph_spi
Rationale: On stm32f4discovery boards there are the same pins for the DAC and/or SPI_0.

EXPECT undesired behaviour!

The warning presents the conflicting features derived from FEATURES_CONFLICT and an optional message derived from FEATURES_CONFLICT_MSG provided int the ./RIOT/board/stm32f4discovery/Makefile.features.

Whenever an application, such as this test, requires board features that match a conflict group, e.g. FEATURES_REQUIRED = periph_dac periph_spi, a similar warning to the above will be displayed during compile time.

###Usage of conflict groups:

	Conflicting features are described in groups separated by a : (doublecolon) for each feature, e.g.:
FEATURES_CONFLICT = periph_spi:periph_dac, which states that periph_spi conflicts with periph_dac.
As seen above, this is the conflict of SPI_0 pinout is shared with DAC on the stm32f4discovery [https://github.com/RIOT-OS/RIOT/wiki/Board%3A-STM32F4discovery] board.

	Distinct groups of conflicts are whitespace separated, e.g.:
featureA:featureB featureC:featureD, which states that featureA conflicts with featureB, and featureC conflicts with featureD.
This also means, that e.g. FEATURES_REQUIRED = featureA featureD would not produce a warning.

	The groups can have an arbitrary number of conflicting features, e.g.:
featureA:featureB:featureC:featureX:featureY:featureZ

	An optional information can be given using the FEATURES_CONFLICT_MSG, e.g.:
FEATURES_CONFLICT_MSG = "featureA uses the same pins as featureB"

	If the required features match multiple conflict groups, ALL conflicting features are provided to the user, e.g.:
FEATURES_CONFLICT = featureA:featureB featureC:featureD and
FEATURES_REQUIRED = featureA featureB featureC featureD
would result in: The following features may conflict: featureA featureB featureC featureD

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

 Index

 Navigation

 	
 index

 	Test test documentation

Index

 Copyright 2015, Test.
 Created using Sphinx 1.3.1.

pkg/cmsis-dsp/README.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Test test documentation »

 Since there is no official public repository for the CMSIS-DSP library, we are using our own repo.

 © Copyright 2015, Test.
 Created using Sphinx 1.3.1.

pkg/USING.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Test test documentation »

 Packages are included to your application as external modules. Thus you only
have to add the following line to your application (and update your INCLUDE path
accordingly):

USEPKG += <pkg_name>

 © Copyright 2015, Test.
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment.png

search.html

 Navigation

 		
 index

